Impact of Site-Directed Mutant Luciferase on Quantitative Green and Orange/Red Emission Intensities in Firefly Bioluminescence
نویسندگان
چکیده
Firefly bioluminescence has attracted great interest because of its high quantum yield and intriguing modifiable colours. Modifications to the structure of the enzyme luciferase can change the emission colour of firefly bioluminescence, and the mechanism of the colour change has been intensively studied by biochemists, structural biologists, optical physicists, and quantum-chemistry theorists. Here, we report on the quantitative spectra of firefly bioluminescence catalysed by wild-type and four site-directed mutant luciferases. While the mutation caused different emission spectra, the spectra differed only in the intensity of the green component (λmax ~ 560 nm). In contrast, the orange (λmax ~ 610 nm) and red (λmax ~ 650 nm) components present in all the spectra were almost unaffected by the modifications to the luciferases and changes in pH. Our results reveal that the intensity of the green component is the unique factor that is influenced by the luciferase structure and other reaction conditions.
منابع مشابه
Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases.
The bioluminescence colours of firefly luciferases are determined by assay conditions and luciferase structure. Owing to red light having lower energy than green light and being less absorbed by biological tissues, red-emitting luciferases have been considered as useful reporters in imaging technology. A set of red-emitting mutants of Lampyris turkestanicus (Iranian firefly) luciferase has been...
متن کاملSite-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color.
Under physiological conditions firefly luciferase catalyzes the highly efficient emission of yellow-green light from the substrates luciferin, Mg-ATP, and oxygen. In nature, bioluminescence emission by beetle luciferases is observed in colors ranging from green (approximately 530 nm) to red (approximately 635 nm), yet all known luciferases use the same luciferin substrate. In an earlier report ...
متن کاملImproved Red-emitting Firefly Luciferase Mutant for Biotechnical Applications
p 3 Introduction pgs 5-10 Materials and Methods pgs 10-18 Materials General Methods Site-directed Mutagenesis Insertion of Promega’s CBRluc into the pGEX-6P-2 vector Protein Expression and Purification Bioluminescence activity-based light assays Heat inactivation studies Bioluminescence emission spectra Microplate luminometer assays Mammalian cell experiments by Promega collaborators: -Transfec...
متن کاملStrategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence.
Bioluminescence spectra of firefly luciferases demonstrate highly pH-sensitive spectra changing the color from green to red light when pH is lowered from alkaline to acidic. This reflects a change of ratio of the green and red emitters in the bimodal spectra of bioluminescence. We show that the mutations strongly stabilizing green (Y35N) or red (H433Y) emission compensate each other leading to ...
متن کاملA set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications.
Error-prone PCR was used to isolate Photinus pyralis luciferase mutants producing bright light in the red-orange region of the spectrum. All mutations were clustered in the beta5-alpha10-beta6 region of N-terminal subdomain B and appear to affect bioluminescence color by modulating the position of the Ser314-Leu319 mobile loop with respect to the putative active site. Two red variants (Q283R an...
متن کامل